Sources of superoxide/H2O2 during mitochondrial proline oxidation
نویسندگان
چکیده
p53 Inducible gene 6 (PIG6) encodes mitochondrial proline dehydrogenase (PRODH) and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.
منابع مشابه
Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation.
Recent studies have demonstrated that the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10), the antagonist of the phosphosphoinositol-3-kinase (PI3K) signaling cascade, is susceptible to H2O2-dependent oxidative inactivation. This study describes the use of redox-engineered cell lines to identify PTEN as sensitive to oxidative inactivation by mitochondrial H2O2....
متن کاملUnraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
The two-step oxidation of proline in all eukaryotes is performed at the inner mitochondrial membrane by the consecutive action of proline dehydrogenase (ProDH) that produces Delta(1)-pyrroline-5-carboxylate (P5C) and P5C dehydrogenase (P5CDH) that oxidizes P5C to glutamate. This catabolic route is down-regulated in plants during osmotic stress, allowing free Pro accumulation. We show here that ...
متن کاملCharacterization of superoxide-producing sites in isolated brain mitochondria.
Mitochondrial respiratory chain complexes I and III have been shown to produce superoxide but the exact contribution and localization of individual sites have remained unclear. We approached this question investigating the effects of oxygen, substrates, inhibitors, and of the NAD+/NADH redox couple on H2O2 and superoxide production of isolated mitochondria from rat and human brain. Although rat...
متن کاملRegulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling.
8-Nitro-cGMP (8-nitroguanosine 3',5'-cyclic monophosphate) is a nitrated derivative of cGMP, which can function as a unique electrophilic second messenger involved in regulation of an antioxidant adaptive response in cells. In the present study, we investigated chemical and biochemical regulatory mechanisms involved in 8-nitro-cGMP formation, with particular focus on the roles of ROS (reactive ...
متن کاملNAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease.
Excessive production of reactive oxygen species in the vasculature contributes to cardiovascular pathogenesis. Among biologically relevant and abundant reactive oxygen species, superoxide (O2*-) and hydrogen peroxide (H2O2) appear most important in redox signaling. Whereas O2*- predominantly induces endothelial dysfunction by rapidly inactivating nitric oxide (NO*), H2O2 influences different as...
متن کامل